Visual Models:
 Multiplication and Division

Grade 3 - Grade 5

Equations in italics are part of the "fact family" for the model shown, so students may be able solve them using this information. However based on the CCSS-M, they are beyond the indicated grade level expectations.

This chart shows some examples of how visual models may be used, and is not an exhaustive list.

	Grade 3	Grade 4	Grade 5	Grade 5
	$\begin{aligned} 6+6+6+6+6+6+6+6 & =48 \\ 48-6-6-6-6-6-6-6-6 & =0 \end{aligned}$			$0.4+0.4+0.4+0.4+0.4+0.4=2.4$ 6 groups of $0.4=2.4$ $\begin{array}{ll} 6 \times 0.4=2.4 & 2.4 \div 6=0.4 \\ 0.4 \times 6=2.4 & 2.4 \div 0.4=6 \end{array}$
	$\begin{array}{ll} 6 \times 8=48 & 48 \div 6=8 \\ 8 \times 6=48 & 48 \div 8=6 \end{array}$	Fraction x Whole Number $\begin{gathered} \frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{10}{3} \\ 5 \text { groups of } \frac{2}{3}=\frac{10}{3} \\ 5 \times \frac{2}{3}=\frac{10}{3} \\ \frac{2}{3} \times 5=\frac{10}{3} \end{gathered}$	Fraction - Whole Number $\begin{gathered} \frac{10}{3} \div 5=\frac{2}{3} \\ 10 / 3 \div 2 / 3=5 \end{gathered}$	

Equations in italics are part of the "fact family" for the model shown, so students may be able solve them using this information. However based on the CCSS-M, they are beyond the indicated grade level expectations.

Visual Models:
Multiplication and Division
Grade 3 - Grade 5

Equations in italics are part of the "fact family" for the model shown, so students may be able solve them using this information. However based on the CCSS-M, they are beyond the indicated grade level expectations.

Visual Models:
 Multiplication and Division

Grade 3 - Grade 5

Connection to Algorithms: Multiplication (3 x 1 digit)

Array/area drawing for 8×549

$$
\begin{aligned}
8 \times 549 & =8 \times(500+40+9) \\
& =8 \times 500+8 \times 40+8 \times 9
\end{aligned}
$$

Method A proceeds from left to right, and the others from right to left. In Method C, the digits representing new units are written below the line rather than above 549, thus keeping the digits of the products close to each other, e.g., the 7 from $8 \times 9=72$ is written diagonally to the left of the 2 rather than above the 4 in 549 .

Visual Models:
 Multiplication and Division

Grade 3 - Grade 5

Connection to Algorithms: Multiplication (2 x 2 digit)

Array/area drawing for 36×94

$36 \times 94=(30+6) \times(90+4)$
$=30 \times 90+30 \times 4+6 \times 90+6 \times 4$

Method D:

Showing the
partial products
Recording the carries below for correct place value placement

Method G: Helping Steps

94	$=90+4$
$\times 36$	$=30+6$
30×90	$=2700$
30×4	$=120$
6×90	$=540$
6×4	$=24$
	$=\frac{1}{3384}$

Method F:

A misleading abbreviated method

1 2 94	From $30 \times 4=120$. The 1 is s hundred, not 1 ten.
$\times 36$	
$\frac{564}{282}$	
3384	

Written Methods D and E are shown from right to left, but could go from left to right. In Method E, digits that represent newly composed tens and hundreds in the partial products are written below the line instead of above 94 . This way, the 1 from $30 \times 4=120$ is placed correctly in the hundreds place and the digit 2 from $30 \times 90=270$ is placed correctly in the thousands place. If thse digits had been placed above 94, they would be in incorrect places (as in Method F). Note that the 0 in the ones place of the second line of method E is there because the whole line of digits is produced by multiplying by 30 (not 3).

Method G is a "helping step" version of Method D. By writing out the tens and the ones in each factor, students can see the number of zeros, and thus use the patterns involving tens and hundreds more easily. By writing the factors for each partial product, they could check on whether all partial products were included.
Fuson, Karen C. and Beckmann, Sybilla. Standard Algorithms in the Common Core State Standards. NCSM Journal. Fall/Winter 2012-2013.
https://www.mathedleadership.org/docs/resources/iournals/NCSMJournal ST Algorithms_Fuson_Beckmann.pdf

Visual Models:
 Multiplication and Division

Grade 3 - Grade 5

Connection to Algorithms: Division

